PHYSICAL REVIEW E 66, 016207 (2002
Isothermal flame balls
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The existence of steady, spherically symmetric wave fr@figsthermal flame balls} in chemical reaction
systems exhibiting autocatalysis is demonstrated. Such solutions require relatively high kinetigpoxiters
respect to the autocatalytic species, with 5, but occur even with equal diffusion coefficients. The flame balls
are unstable, but have relevance as they indicate the minimum size for a perturbation to initiate a propagating
front. A flame ball radiusR,, is identified and the dependence of this quantity on the autocatalytic order is
determined. This showR,, tending to infinity agp—5" and asp— <, with a minimum forp~6.71. Numeri-
cal computations are confirmed by asymptotic analysis appropriate-fd* and for systems witlp large.
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[. INTRODUCTION in the combustion context, have been investigated theoreti-
cally [19,20 and have been shown to be unstable in the
The propagation of constant-velocity, constant-form trav-adiabatic case. Even so, such steady-state structures could
eling waves in chemical systems driven by autocatalytic ki-have relevance in terms of determining the growth or decay
netics has been of considerable interest since the work aff flames from specific initial conditions. We may also note
Fisher and Kolmogoroy1-5]. In part, this interest derives that volumetric heat loss may cause a stabilization of the
from the importance of such reaction-diffusion solutions inflame ball structure§21] and that stable flame balls appear
biological situations such as nerve signal transmission oto have been recently observed experimentally under micro-
muscle contractiorisee[6—10], for example. Chemical au- gravity conditions[22—24. For terrestrial conditions, flame
tocatalysis can be represented by a model “mass actionball solutions cannot be maintained in combustion systems
process converting a reactahto an autocatalytic produ@  due to the inevitable influence of natural convective effects

according to the stoichiometry arising from the production of hot gaseous products.
The analogy between thermal feedback in exothermic
A+pB—(p+1)B (1) combustion and chemical feedback in isothermal autocata-

lytic systems has been noted previoughp—27. In this pa-

with a rater given byr =kabP, wherek is a rate coefficient, per, therefore, we investigate the existence of isothermal
aandb are the concentrations of reactaAtsndB, andpis  flame balls in the model autocatalytic scherfle. Such
the order of the reaction with respect to the autocatalytichemical reactions can be studied experimentally in gels to
specieq11]. suppress convection under normal laboratory conditions. In

The nature of the traveling wave solution, its selection,the absence of subsequent reaction steps involving the auto-
and its development from localized initial inputs of autocata-catalyst, the chemical system is analogous to an adiabatic
lysts for such systems has been studied in some detail byombustion system. This simple model is investigated to de-
Merkin, Needham, and co-workers in a series of pafie2zs-  termine the conditions under which steady, radially symmet-
17]. For the case of so-calledubic autocatalysiswith p ric solutions can exist. The equations governing these steady
=2) with equal species diffusion coefficients, an interestingsolutions can be combined to give a simple relation connect-
observatior[15] for reaction domains with spherical geom- ing the concentrations ok andB. This relation can then be
etry is that there exists some critical radiRg such that if ~ used to reduce the problem to the consideration of a single
the localized input extends over a region of radRisR, , a equation for the concentration 8t A further scaling of this
traveling wave solution is eventually established, buRif —equation shows that it can be expressed in a universal form,
<R, then no traveling wave solution develops and the sysindependent of the ratio of the diffusion coefficientsfodind
tem returns to its original state. This result was extended if3- This is not the case for the corresponding initial-value
[17] in which it was shown that, ip>1+2/N (whereN is problem. A necessary condition for the existence of a solu-
the space dimensignthen a threshold on the autocatalyst tion with the appropriate “smoothness” at large distances is
input was needed before waves could form. These resul@>5. For I=p<5, there are steady solutions which have
imply the existence of a separatrix between the two types ofompact support with a discontinuity in the derivative at a

large time development. finite distance.
Such a solution of similar equations has been noted pre-
viously in a different context: Zel'dovicfil8] showed that Il. EQUATIONS

the classic reaction-diffusion-conduction equations for a pre-
mixed laminar flame also have a steady-state solution in The equations governing the reaction and diffusion of the
spherical geometry. These solutions, known as “flame balls'two reactantsA and B are (see[3,5,11, for example
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whereD, andDg are the diffusion coefficients o4 and B
respectively, subject to the condition that

0
R
a—ay, b—0 as|x—w ©) (@) r 0

together with boundedness conditions at the origin and that :
_ _ _ [
a=a,, b=0 att=0 4 Ro |
[
except in some local region, centered on the origin, where |
there is some input d8 to start a reaction. We make Edg) [
dimensionless using the reaction timeaf) ~* and a length 0 1'

scale based on this arial, , namely, we put (b) uo

. o . ag 1/2
a=apa, b=agh, t=(kat, x=x(—) . (5 ' '
Da | I
I [
This leads to the dimensionless equatidas dropping the Ro I '
bars for convenienge : :
[ [
e 2 p db 2 p 0 ! L
E:V a—abP, EZDV b+abP, (6) © uglh 1
C uo

whereD=Dg/D,. We also impose the conditiop=1 to FIG. 1. (a) A schematic representation of the form that the so-

ensure that the reaction terms are Lipschitz continuous.
We are concerned here with steady solutions to Ejs.

i.e., with solutions to the equations

V2a—abP=0, DV?b+abP=0 (7)

subject to

a,b continuous at|x|=0, a—1, b—0 as |x|—c=.

®)

We can add Eqg7) to eliminate the reaction terms, obtain-
ing div(Va+DVb)=0. The resulting equation can be inte-
grated twice to get, assuming uniform conditions at large

distancedi.e., Va,Vb—0 as|x|—<) and applying Eq(8),

a+Db=1. (9

lutions take for &p<5 or p>5, uy>ult showing where the
solution first becomes zero &,. Plots of Ry againstu, for (b) 1
<p<5,(c) p>5.

(differentiation with respect tx). It is the nature of the
solutions to Eq(12) that we now consider.

Ill. STEADY SOLUTIONS

We note thati=0 is a steady solution and that all positive

steady solutions are radially symmetf&8], i.e., they satisfy
N

(N-1)

u”"+ Tu’+(1—u)up=0, u’(0)=0,

This result can also be deduced from the uniqueness for so-

lutions of Laplace’s equation, sincee=a+Db satisfies

V2w=0w—1 as|x|—® and has thgunique solution w

=1. We can then use expressi®) to eliminatea from Eq.

(7) and obtain a single equation fbr namely,
DV?b+(1—Db)bP=0. (10

We now apply the further scaling

u=Db, Xx=D P2 (12)
This results in the equation
V2u+(1—u)uP=0 (12

u—0 asr—oo, (13

and haveu’(r)<0 on 0<r<, wherer measures the dis-
tance from the origin and where primes denote differentia-
tion with respect ta.

It is the positive, spherically symmetritNE 3) solutions
to Eq.(13) that we are concerned with here. These solutions
have been characterized [80] through the valuéy(ug) of
r at which the solution first becomes zero, whegis the
value ofu atr=0. The situation is illustrated schematically
in Fig. 1. The main point to note from this figure is that for
1=<p<5 there are no values of, for which there is a solu-

tion on O<r <o, In this case any solutioE(r;RO) of Eq.
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(13) becomes zero at a finite vald®, of r with u(r;Rg)
<0 for r>R,. This is not the case fq=>5. Now there is a
range of values fou,, 0<upy<u§’<1, which give solu-
tions u(r) that are nonzero on<Br <o and satisfy the re-
quired boundary conditions as—. Note thatu{’'—0 as
p—5" and increases witp.

The solutionsu(r) of Eq. (13) for 0<up<u{",p>5 can
be one of the two general types identified 80]. These can
be slow decaying solutionsvhich, in the present case, have

u~r-2P=1 a5 row
or ground stategfast decaying solutionswhich have

u~r - as r—om,
For a given value ofp (>5) the ground state solution is
unique, i.e., there is only one value gf in 0<ug=<u¢"
which gives rise to a ground state solution.

Before we consider our numerical investigation of Eq.
(13) we mention the results concerning the traveling waves
that can arise as long time behavior of initial-value problem
(6). ForD =1 the two time-dependent equations can be com-
bined into a single equation fdr (say) using Eq.(9). This is
not the case fob # 1, where no such simplification is pos-
sible and the full two-variable system has to be considered
[31]. It was shown irf15] for the spherically symmetric case
with D=1 that traveling waves are initiated for any input
Uog(r)>0 for 1=<p<5/3 [where the functiorg(r) is non-
zero only on some finite range pfind has a maximum value
of unity]. However, forp>5/3 a threshold input was re-
quired, i.e,uy>ug"" was needed. The nature of the resulting
traveling waves was discussed[iti7], where it was shown
that the wave speeddecreased monotonically with increas-
ing p and that the solution became singularms 1, with
c~2+0([p—1]%® for (p—1) small. We can extend the

radially symmetric solutionsi(r;Ry) beyondR, by taking

U(r;RO) =0 forr>R,. These solutions are then subsolutions
for the initial-value problent6). Fife [32] has shown that, if

u(x,0)=u(r;Ry), then u(x,t)—1 ast—o uniformly in
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FIG. 2. Ry, the value where the solution is zero, plotted against

.co_r.np.act sets irR’f‘, thus giving a sufficient condition for the y, for (a) p=2, (b) p=4. (c) Solutionsu(r;Ry) for values ofu,
initiation of traveling waves. slightly less than unity fop=4.

A. Numerical simulations =6 and atuy=0.92 forp=7). Forp=5 the curve still ap-

We start by calculatindRqg(up), the results are shown in
Figs. 2 and 3. Figure(@) (for p=2) shows thaR, increases
asuy—0, changes only relatively slowly for 0s2u,<<0.95,
and rises very steeply ag— 1 from below. Forp=4 [Fig.
2(b)] the values oR, are somewhat larger than those for
=2 and the rapid increase iRy asuy—1 is even more
pronounced. The behavior closeug=1 is expanded in the

inset in Fig. Zb). SqutionsU(r;Ro) for ug close to unity are

A
displayed in Fig. &), showing howR, increases asg,— 1. u(r)~ 0

In Fig. 3 we plotR, againstu, for p=5, 6, and 7. There
is again a very sharp rise iRy close toug=1 (not really
seen in the figung though now forp=6, 7 the curves have

proaches theR, axis asuy,—0 though with much greater
values ofR, than for the two previous cases.

We next consider numerical solutions to E#3), looking

for ground statesolutions. The form that these solutions take
for large and smalf can be found by substituting the appro-
priate expansions into E¢L3) and equating like powers of
We find that

Af
72_1_...
r (p—2)(p—3)rP

asr—o (p>5)

(14

vertical asymptotes at values af>0 (at up=0.75 forp  for some positive constam,, and have, sinca’(0)=0,
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FIG. 3. Ry, the value where the solution is zero, plotted against

uo for p=5, 6, 7. FIG. 5. A graph ofuy againstp obtained from the numerical

integration of Eq.(13) (full line). Asymptotic expressioni42) for
(p—5) small is shown by the broken line.
(1-ug)uf 2
6 r files become more spread out for larger valueg,ofith ug
o1 also increasing witlp. This latter point is brought out more
ug” (1= up)[ug—p(1—ug)] 4y clearly in Fig. 5, where we ploti, againstp. The graph
120 r shows thatiy;— 1 for p>1 and suggests that, approaches
zero asp—5 from above. The values obtained fay of ug
asr—0. =0.7533 forp=6 anduy=0.9166 forp=7 correspond to
Expression(15) shows that we must have,<1. If ug the vertical asymptotes in Fig. 3. This suggests that the maxi-
=1, then we get the trivial solution(r)=1, which does not mum values ofu, for which a solution on €r <« is pos-
satisfy the outer boundary conditions. uf>1, thenu(r)  sible give the ground states. For valuesugfless than this
must increase with for r small. To satisfy the outer bound- maximum we obtain the slow decaying solutions, which
ary conditionsu(r) must have a local maximum at=r, haveu~r~2®~1 for r large.
(say, wherer,;>0 and u(r,)>1, u'(r{)=0u"(r,)=<0. We now consider these two limiting forms, starting by
However, from Eq(13) u”(r,)=[u(r,)—1]Ju(r,)P>0, giv-  looking at the nature of the solution forlarge.
ing a contradiction. A consequence of this result is that 0
=u(r)<1 on 0<r<oo. B. Solution for p large
The solutions for large and smallyiven by Eqs(14) and
(15 were joined numerically using a standard shootingFi
method for solving boundary-value problems. The squtiont
was calculated at=0.001 using Eq(15) and this was ex-
tended numerically using th&voDE packagd 33]. The value
of ug was adjusted until the behavior given by Ef4) was
approached at a large value of We found that taking _ - v ; tva S
=200.0 gave sufficient accuracy. This procedure determines’ X(p)+r,  X=pX, with X of O(1) for p>(11.6)
the values ofuy and Ay for a given value ofp. Typical
profiles are shown in Fig. 4. The figure shows that the proThe reason for the scaling f&twill become apparent below.

u(r)=ug—

(19

The structure of the solution fqu large is illustrated in
g. 6, where we plou(r) for p=40.0. This figure shows
hat, withp>1, there is an inner region whetg¢r)=1 and
a “reaction region” centred om= X(p), with X(p)>1 for
p>1. This suggests that we make the transformation

1.0, 1.0
Bt ——y
vV -- p=6.0
08 %  he7o 0.8
i ... p=10.0
0.6 0.6
u u
0.4 0.4
0.2 0.2
00— 25 slro %5 00 00— 20 4o r 80 80 100
FIG. 4. Solutionsu(r), satisfying Eqs(14) and (15), obtained FIG. 6. A graph ofu(r) for p=40 to illustrate the structure of
from the numerical integration of Eq13) for p=5.5, p=6, p the solution forp large, obtained from the numerical integration of
=7 andp=10. Eq. (13).

016207-4



ISOTHERMAL FLAME BALLS

When transformatiof16) is substituted into Eq$13), we

PHYSICAL REVIEW E 66, 016207 (2002

u=o"U, y=4°"r, (25

find that the resulting equations have a two-layer structure.

There is an inner layer whereis left unscaled and in which Where the exponemh (m>0) is to be determined. Applying
we putu=1—B/p. We then look for a solution by expand- Ed-.(25) in Eq. (13) gives

ing B andX in inverse powers of. The leading-order terms

i 2
(Bo,Xo) are all that we really need to consider. These satisfy, U"+ gU "+(1-8™U)U°exp[&(InU+min 5)]=0.

on lettingp—oe,

By—Boe Bo=0, By—0 asr——o. (17)

Primes now denote differentiation with respectr_toFrom
Eqg. (17) it follows that

By?=2[1—(1+By)e Bo] (18
and then
\ar —
Bo~vV2r+---, henceu~1—T~-~ as r—om,
(19

The expression fou in Eq. (19) suggests the scaling

=r_/p for the outer layer, withu left unscaled in this region.

In this outer layeu<1 and hencei®—0 asp—o. Then, to

get a viable solution in the outer region both terms arisin

(26)

Now primes denote differentiation with respectyto
First suppose tham<1. Equation(26) then suggests
looking for a solution by expanding

U(y;8)=Uo(y) +6™Us(y) +0(8,8Ind).  (27)
At leading order we obtain
" 2 ’ 5
Ug+ U H+Ug=0. (29
Fory small
uozbo—gJﬁ- (29

gfor some constari, to be determined. We can scdlg out

from the diffusion must balance. This, together with the scal° the leading-order problert28), (29) by putting

ing of r for the outer region, requires th&tbe of O(p). The
equation at leading order for this region is

2
U+ = u’'=0, (20
Xot+¢

subject to, from Eqs(13) and(19),

Uu~1—+27+--- as¢—0, u—0 as/—x»

(21)

(primes denote differentiation with respect £9. The re-
quired solution is

Xo

(Xo+ &)

Matching Eq.(22) with the inner layer Eq(21) then gives

(22

Xo=—=, hence X~£ +0(1)

V2’ V2

for p>1. (23

C. Solution asp—5

To obtain a solution to Eq(13) valid as p—5 from
above, we put

p=5+5, 0<os<l. (24)

The numerical integrations indicate that bath and u(r)

decrease in size g5—5 (see Fig. 5. This, together with Eq.

(13), suggests that we introduce the scaling

UO: boUo y y: b(z)y (30)
U, satisfies Eq(28) (with y replaced byy) and has
2
U0_1_€+ﬂ+”" y small,
_ Cy C3 _
~=—=t, Y large. (3D
y 6y

A solution to Eq.(28), satisfying Eq(31), can be determined
numerically as an initial-value problem starting witlsmall.
This givesCy=1.7321.

At O(6™) we obtain

" 2 ’ 4 6
Ui+ [ Ui+5U5U;=Ug. (32
Equation(32) has a complementary function
U=2yU,+U,, (33

which satisfies the required boundary conditiptisbounded

aty=0 and had) of O(y ™) for y large]. Thus, if we write
Eqg. (32 in the self-adjoint form d/dy)(y2U£)+5y2UéU1
=y2US$, we can see that it has a solution only if the compat-
ibility condition

f UgUy*dy= f (2y*UgUg+y?Ug)dy=0 (34
0 0

016207-5



JAKAB et al. PHYSICAL REVIEW E 66, 016207 (2002

is satisfied. If we integrate by parts the term involvidg, as6=(p—5)—0. A graph of asymptotic expressida?2) is
we find that this condition isiot satisfied, the integral be- plotted in Fig. 5(the broken ling showing agreement with
comes3 [5y?Udy>0. the numerically determined values @slecreases towards 5.
Thus we must taken= 1, with scaling(25) becoming We can use this approach to explain why=5 is the
critical exponent foN=3. Consider a general valyg for p
(po>1) and putp=pg+ 6 (0<6<1). The above analysis

_ _ 2
u=du, y=éT. (39 suggests that we first make the transformation

An expansion of the form
u=6U, y=¢Po D2 (43
U(y;0)=Uog(y)+8(n U (y) +Ux(y)+---  (36)

and expand as in Eq36). The corresponding leading-order

is now suggested. At leading order we again get @), equation is, for a general geometric dimenshihn

rescaled by Eq(30) to remove the constaf. At O(51In 6)
we obtain

(N-1)

Ug+ Ug+Upe=0 (44)

” 2 ’ 4 5
Ul+§ul+5UOU1=—UO. (37)
[satisfying conditions equivalent to E¢31), the modifica-
tion to transformation(30) is Vz bf)pofl)lzy].

It is the term atO(&SIn 6) that is the important one to
consider. We note that a term of this order will always appear
in any asymptotic expansion for smallas it arises from the

scaling ofu in Eq. (43) in which § is raised to the poweé.
The corresponding equation is

The compatibility condition equivalent to Eg34) is now
that

fUSUyzdy=f (2y*UgUo+y?Ugdy=0. (38
0 0

Now integrating by parts the term involvirid, shows that

this conditionis satisfied and a solution at this order is pos-

sible. ,  (N=1)
At O(6) we obtain Uit

Up+poUle tu,=—up. (45)

2 Equation(45) has a complementary function
u;+§ug+sugu2=ug(uo—|n Uo). (39)

We rescale Eq(39) using Eq.(30) andU,=boU, to obtain U= ( poz— 1)yU(’)+ Uo (46)

Us+ EUéJr 5U3U,=U3(bgUy—InUy—Inby). (40)  equivalent to Eq(33), which satisfies the required boundary
y conditions. This then leads to the compatibility condition that
The compatibility condition now becomes

o ~ N Po(2—N)+(N+2)
UPOU N 1d —
fo o oY Y 2(pot 1)

J Ug(boUg—InUg—Inby)Uy?dy
0
bo [*——y — 1 (" — X fo yNTtuPttdy=0, (47
=—f y*Ugdy— —f y’Ugdy=0. (4D
7Jo 6Jo
o N ] . providedN>2. This gives the critical exponent
It is this condition that determines the valuelgf Numerical
integration gived,=1.7181.
The solution aD(8) is not unique, any multiple dff can
be added. We expect the arbitrariness at this order to be Po=—7 (N>2). (48)
resolved at higher terms in the expansi@6).
The above analysis shows that the solution has a we
logarithmic singularity ap—5* with

al‘éxpression(48) gives po=5 whenN=3 and suggests that
the isothermal flame balls are a direct consequence of having
spherical geometry and will not arise in either planar or cy-
Uo~1.71815+ O( 6%, 6%n &) (42)  lindrical geometries.
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IV. STRUCTURE OF THE SOLUTION (@) 250

The above analysis confirms the existence of steady iso- .00 2N - E?g
thermal flame ball solutions for the reaction-diffusion system )
driven by an autocatalytic reaction of sufficiently high order
(p>5). Although such autocatalytic orders are not common
in simple solution-phase chemical systems, valuespfan
the relevant range have been reported for a model represen-
tation of systems with micellar and phase-transfer autoca-
talysis[34—37. The results given here also extend in a for-
mal manner the results presented previously by Merkin and
Needham for lower autocatalytic powers, and also provide a
connection to the behavior of nonisothermal systems driven (®)
by the Arrhenius temperature dependence of reaction rate
coefficients. 100k
The steady-state profiles identified here are unstable solu-
tions of the corresponding initial-value problem. As such,
they are still of distinct practical interest as they identify the R

critical “watershed” between initial conditions for which )

propagating reaction fronts can develop and those for which

initiation fails. It is thus of interest to determine how the

“size” of the steady state flame ball varies with the autocata- 5.0r

lytic power p. To make this question precise, we define a o A L = 25
reaction rate per unit radial distanag,=r2uP(1—u). For ' ' p ' '
D,=Dg, this is equivalent to the functiarfabP. This func-

tion is plotted as a function of the radial distamder several (c) 10.0p

values of the autocatalytic orderin Fig. 7(a). We then de-

fine the “radius” of the flame ball in terms of the locatidt,

at which this function has a maximum for any given value of
p. The resulting variation oR,, with p is shown in Fig. ).

This shows a rapid decrease in radiuspascreases from
p=5, with a minimum radius ap=6.71. For higher auto-
catalytic orders, the radius increases, showing an approach to
a constant slope of0.7 for p large. This linear growth at
high p is consistent with the asymptotic analysis which pre-
dicts a slope of 1/2 [expression23)].

The analysis of the preceding section provides insights
into how the steady solution changesmmcreases fronp FIG. 7. (&) A graph ofv,, the reaction rate per _unit radial dis-
=5. For values ofp just abovep=5 the autocatalyst con- tance, for a range of values @f (b) R,, the position where,
centration takes only small values throughout,Giffip—5) achieves its maximum valu_e, plotted S\galpstc) RV_, the _posmor_l
from Eq. (35). However, the profiles extend over large dis- where the volumetric regctlon raté=uP(1—u) achieves its maxi-
tances from the center, @([p—5] 2). As p increases the mum value, plotted againgt
autocatalyst concentration increases, approaching a constdntegrate and apply conditiorid¢4) and(15), we obtain
value at the center, with the extent of the profile decreasing.

For even larger values ¢f, a fuI_Iy reacted_cor_e region de- A= erZUp(l_u)dr (49)
velops and the outer structure is purely diffusive. There is a 0

relatively thin reaction zone between these two regions. This | o )

behavior is apparent in Fig(@ for the higher values of, with the value ofA, providing an estimate foR,,. From
which reveals the development of the central core and alsE9S-(30), (31), and(35)

shows that the maximum value of increases witlp. Co

In Fig. 7(c), we plot the locatiorRy, of the maximum of Ao~ WA =1.0085"1+... as 6—~0 (50
the volumetric reaction raté=uP(1—u). For low autocata- 0
lytic powers (p==5), this maximum occurs at the center of (where §=p—5).
the sphereRy =0, but asp increases, the maximum moves  Equation (13), which we considered in detail, was
away from the center gi=6.55, indicating the initial onset derived from the original dimensional version by a nonstand-
of the central core region. This onset is apparently linked taard transformation. The autocatalyst concentration is
the minimum inRy,. made dimensionless with a weighting of diffusion co-

The origin of the growth ap—5* can be understood efficients, b=u(D,/Dg)a,. A similar sort of weighting
from Eq. (13). If we multiply this Eq.(with N=3) by r?, is used for the dimensionless spatial variable
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