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Isothermal flame balls
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The existence of steady, spherically symmetric wave fronts~‘‘isothermal flame balls’’! in chemical reaction
systems exhibiting autocatalysis is demonstrated. Such solutions require relatively high kinetic ordersp with
respect to the autocatalytic species, withp.5, but occur even with equal diffusion coefficients. The flame balls
are unstable, but have relevance as they indicate the minimum size for a perturbation to initiate a propagating
front. A flame ball radiusRb is identified and the dependence of this quantity on the autocatalytic order is
determined. This showsRb tending to infinity asp→51 and asp→`, with a minimum forp'6.71. Numeri-
cal computations are confirmed by asymptotic analysis appropriate forp→51 and for systems withp large.
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I. INTRODUCTION

The propagation of constant-velocity, constant-form tra
eling waves in chemical systems driven by autocatalytic
netics has been of considerable interest since the wor
Fisher and Kolmogorov@1–5#. In part, this interest derive
from the importance of such reaction-diffusion solutions
biological situations such as nerve signal transmission
muscle contraction~see@6–10#, for example!. Chemical au-
tocatalysis can be represented by a model ‘‘mass act
process converting a reactantA to an autocatalytic productB
according to the stoichiometry

A1pB→~p11!B ~1!

with a rater given byr 5kabp, wherek is a rate coefficient,
a andb are the concentrations of reactantsA andB, andp is
the order of the reaction with respect to the autocatal
species@11#.

The nature of the traveling wave solution, its selectio
and its development from localized initial inputs of autoca
lysts for such systems has been studied in some deta
Merkin, Needham, and co-workers in a series of papers@12–
17#. For the case of so-calledcubic autocatalysis~with p
52) with equal species diffusion coefficients, an interest
observation@15# for reaction domains with spherical geom
etry is that there exists some critical radiusRcr such that if
the localized input extends over a region of radiusR.Rcr , a
traveling wave solution is eventually established, but ifR
,Rcr then no traveling wave solution develops and the s
tem returns to its original state. This result was extended
@17# in which it was shown that, ifp.112/N ~whereN is
the space dimension!, then a threshold on the autocataly
input was needed before waves could form. These res
imply the existence of a separatrix between the two type
large time development.

Such a solution of similar equations has been noted
viously in a different context: Zel’dovich@18# showed that
the classic reaction-diffusion-conduction equations for a p
mixed laminar flame also have a steady-state solution
spherical geometry. These solutions, known as ‘‘flame ba
1063-651X/2002/66~1!/016207~8!/$20.00 66 0162
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in the combustion context, have been investigated theo
cally @19,20# and have been shown to be unstable in
adiabatic case. Even so, such steady-state structures c
have relevance in terms of determining the growth or de
of flames from specific initial conditions. We may also no
that volumetric heat loss may cause a stabilization of
flame ball structures@21# and that stable flame balls appe
to have been recently observed experimentally under mi
gravity conditions@22–24#. For terrestrial conditions, flame
ball solutions cannot be maintained in combustion syste
due to the inevitable influence of natural convective effe
arising from the production of hot gaseous products.

The analogy between thermal feedback in exotherm
combustion and chemical feedback in isothermal autoc
lytic systems has been noted previously@25–27#. In this pa-
per, therefore, we investigate the existence of isother
flame balls in the model autocatalytic scheme~1!. Such
chemical reactions can be studied experimentally in gels
suppress convection under normal laboratory conditions
the absence of subsequent reaction steps involving the a
catalyst, the chemical system is analogous to an adiab
combustion system. This simple model is investigated to
termine the conditions under which steady, radially symm
ric solutions can exist. The equations governing these ste
solutions can be combined to give a simple relation conn
ing the concentrations ofA andB. This relation can then be
used to reduce the problem to the consideration of a sin
equation for the concentration ofB. A further scaling of this
equation shows that it can be expressed in a universal fo
independent of the ratio of the diffusion coefficients ofA and
B. This is not the case for the corresponding initial-val
problem. A necessary condition for the existence of a so
tion with the appropriate ‘‘smoothness’’ at large distances
p.5. For 1<p,5, there are steady solutions which ha
compact support with a discontinuity in the derivative a
finite distance.

II. EQUATIONS

The equations governing the reaction and diffusion of
two reactantsA andB are ~see@3,5,11#, for example!
©2002 The American Physical Society07-1
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]a

]t
5DA¹2a2kabp,

]b

]t
5DB¹2b1kabp, ~2!

whereDA andDB are the diffusion coefficients ofA andB
respectively, subject to the condition that

a→a0 , b→0 as uxu→` ~3!

together with boundedness conditions at the origin and t

a5a0 , b50 at t50 ~4!

except in some local region, centered on the origin, wh
there is some input ofB to start a reaction. We make Eqs.~2!
dimensionless using the reaction time (ka0

p)21 and a length
scale based on this andDA , namely, we put

a5a0ā, b5a0b̄, t̄ 5~ka0
p!t, x̄5xS ka0

p

DA
D 1/2

. ~5!

This leads to the dimensionless equations~on dropping the
bars for convenience!

]a

]t
5¹2a2abp,

]b

]t
5D¹2b1abp, ~6!

whereD5DB /DA . We also impose the conditionp>1 to
ensure that the reaction terms are Lipschitz continuous.

We are concerned here with steady solutions to Eqs.~6!,
i.e., with solutions to the equations

¹2a2abp50, D¹2b1abp50 ~7!

subject to

a,b continuous atuxu50, a→1, b→0 as uxu→`.
~8!

We can add Eqs.~7! to eliminate the reaction terms, obtain
ing div(“a1D“b)50. The resulting equation can be int
grated twice to get, assuming uniform conditions at la
distances~i.e.,“a,“b→0 asuxu→`) and applying Eq.~8!,

a1Db51. ~9!

This result can also be deduced from the uniqueness for
lutions of Laplace’s equation, sincew5a1Db satisfies
¹2w50,w→1 as uxu→` and has the~unique! solution w
[1. We can then use expression~9! to eliminatea from Eq.
~7! and obtain a single equation forb, namely,

D¹2b1~12Db!bp50. ~10!

We now apply the further scaling

u5Db, x̃5D2p/2x. ~11!

This results in the equation

“

2u1~12u!up50 ~12!
01620
t

e
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~differentiation with respect tox̃). It is the nature of the
solutions to Eq.~12! that we now consider.

III. STEADY SOLUTIONS

We note thatu[0 is a steady solution and that all positiv
steady solutions are radially symmetric@28#, i.e., they satisfy
on R N,

u91
~N21!

r
u81~12u!up50, u8~0!50,

u→0 as r→`, ~13!

and haveu8(r ),0 on 0,r ,`, wherer measures the dis
tance from the origin and where primes denote differen
tion with respect tor.

It is the positive, spherically symmetric (N53) solutions
to Eq. ~13! that we are concerned with here. These solutio
have been characterized by@29# through the valueR0(u0) of
r at which the solution first becomes zero, whereu0 is the
value ofu at r 50. The situation is illustrated schematical
in Fig. 1. The main point to note from this figure is that f
1<p,5 there are no values ofu0 for which there is a solu-
tion on 0<r ,`. In this case any solutionū(r ;R0) of Eq.

FIG. 1. ~a! A schematic representation of the form that the s
lutions take for 1<p,5 or p.5, u0.u0

(1) showing where the
solution first becomes zero atR0. Plots ofR0 againstu0 for ~b! 1
<p,5, ~c! p.5.
7-2
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~13! becomes zero at a finite valueR0 of r with ū(r ;R0)
,0 for r .R0. This is not the case forp.5. Now there is a
range of values foru0 , 0,u0,u0

(1),1, which give solu-
tions u(r ) that are nonzero on 0<r ,` and satisfy the re-
quired boundary conditions asr→`. Note thatu0

(1)→0 as
p→51 and increases withp.

The solutionsu(r ) of Eq. ~13! for 0,u0<u0
(1) ,p.5 can

be one of the two general types identified in@30#. These can
be slow decaying solutions, which, in the present case, hav

u;r 22/(p21) as r→`

or ground states~fast decaying solutions!, which have

u;r 21 as r→`.

For a given value ofp (.5) the ground state solution i
unique, i.e., there is only one value ofu0 in 0,u0<u0

(1)

which gives rise to a ground state solution.
Before we consider our numerical investigation of E

~13! we mention the results concerning the traveling wa
that can arise as long time behavior of initial-value probl
~6!. ForD51 the two time-dependent equations can be co
bined into a single equation forb ~say! using Eq.~9!. This is
not the case forDÞ1, where no such simplification is pos
sible and the full two-variable system has to be conside
@31#. It was shown in@15# for the spherically symmetric cas
with D51 that traveling waves are initiated for any inp
u0g(r ).0 for 1<p,5/3 @where the functiong(r ) is non-
zero only on some finite range ofr and has a maximum valu
of unity#. However, for p.5/3 a threshold input was re
quired, i.e,u0.u0

min was needed. The nature of the resulti
traveling waves was discussed in@17#, where it was shown
that the wave speedc decreased monotonically with increa
ing p and that the solution became singular asp→1, with
c;21O(@p21#2/3) for (p21) small. We can extend th
radially symmetric solutionsū(r ;R0) beyondR0 by taking
ū(r ;R0)50 for r .R0. These solutions are then subsolutio
for the initial-value problem~6!. Fife @32# has shown that, if
u(x,0)>ū(r ;R0), then u(x,t)→1 as t→` uniformly in
compact sets inR N, thus giving a sufficient condition for the
initiation of traveling waves.

A. Numerical simulations

We start by calculatingR0(u0), the results are shown in
Figs. 2 and 3. Figure 2~a! ~for p52) shows thatR0 increases
asu0→0, changes only relatively slowly for 0.2,u0,0.95,
and rises very steeply asu0→1 from below. Forp54 @Fig.
2~b!# the values ofR0 are somewhat larger than those forp
52 and the rapid increase inR0 as u0→1 is even more
pronounced. The behavior close tou051 is expanded in the
inset in Fig. 2~b!. Solutionsū(r ;R0) for u0 close to unity are
displayed in Fig. 2~c!, showing howR0 increases asu0→1.

In Fig. 3 we plotR0 againstu0 for p55, 6, and 7. There
is again a very sharp rise inR0 close tou051 ~not really
seen in the figure!, though now forp56, 7 the curves have
vertical asymptotes at values ofu0.0 ~at u0.0.75 for p
01620
.
s

-

d

56 and atu0.0.92 for p57). For p55 the curve still ap-
proaches theR0 axis asu0→0 though with much greate
values ofR0 than for the two previous cases.

We next consider numerical solutions to Eq.~13!, looking
for ground statesolutions. The form that these solutions ta
for large and smallr can be found by substituting the appr
priate expansions into Eq.~13! and equating like powers ofr.
We find that

u~r !;
A0

r
2

A0
p

~p22!~p23!r p22
1••• as r→` ~p.5!

~14!

for some positive constantA0, and have, sinceu8(0)50,

FIG. 2. R0, the value where the solution is zero, plotted agai

u0 for ~a! p52, ~b! p54. ~c! Solutionsū(r ;R0) for values ofu0

slightly less than unity forp54.
7-3
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u~r !5u02
~12u0!u0

p

6
r 2

2
u0

2p21~12u0!@u02p~12u0!#

120
r 41••• ~15!

as r→0.
Expression~15! shows that we must haveu0,1. If u0

51, then we get the trivial solutionu(r )[1, which does not
satisfy the outer boundary conditions. Ifu0.1, thenu(r )
must increase withr for r small. To satisfy the outer bound
ary conditionsu(r ) must have a local maximum atr 5r 1
~say!, where r 1.0 and u(r 1).1, u8(r 1)50,u9(r 1)<0.
However, from Eq.~13! u9(r 1)5@u(r 1)21#u(r 1)p.0, giv-
ing a contradiction. A consequence of this result is tha
<u(r ),1 on 0,r ,`.

The solutions for large and smallr given by Eqs.~14! and
~15! were joined numerically using a standard shoot
method for solving boundary-value problems. The solut
was calculated atr 50.001 using Eq.~15! and this was ex-
tended numerically using theCVODE package@33#. The value
of u0 was adjusted until the behavior given by Eq.~14! was
approached at a large value ofr. We found that takingr
5200.0 gave sufficient accuracy. This procedure determ
the values ofu0 and A0 for a given value ofp. Typical
profiles are shown in Fig. 4. The figure shows that the p

FIG. 3. R0, the value where the solution is zero, plotted agai
u0 for p55, 6, 7.

FIG. 4. Solutionsu(r ), satisfying Eqs.~14! and ~15!, obtained
from the numerical integration of Eq.~13! for p55.5, p56, p
57 andp510.
01620
0
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files become more spread out for larger values ofp, with u0
also increasing withp. This latter point is brought out more
clearly in Fig. 5, where we plotu0 againstp. The graph
shows thatu0→1 for p@1 and suggests thatu0 approaches
zero asp→5 from above. The values obtained foru0 of u0
50.7533 forp56 andu050.9166 forp57 correspond to
the vertical asymptotes in Fig. 3. This suggests that the m
mum values ofu0 for which a solution on 0,r ,` is pos-
sible give the ground states. For values ofu0 less than this
maximum we obtain the slow decaying solutions, whi
haveu;r 22/(p21) for r large.

We now consider these two limiting forms, starting b
looking at the nature of the solution forp large.

B. Solution for p large

The structure of the solution forp large is illustrated in
Fig. 6, where we plotu(r ) for p540.0. This figure shows
that, with p@1, there is an inner region whereu(r )[1 and
a ‘‘reaction region’’ centred onr 5X(p), with X(p)@1 for
p@1. This suggests that we make the transformation

r 5X~p!1 r̄ , X5pX̄, with X̄ of O~1! for p@1.
~16!

The reason for the scaling forX will become apparent below

t
FIG. 5. A graph ofu0 againstp obtained from the numerica

integration of Eq.~13! ~full line!. Asymptotic expression~42! for
(p25) small is shown by the broken line.

FIG. 6. A graph ofu(r ) for p540 to illustrate the structure o
the solution forp large, obtained from the numerical integration
Eq. ~13!.
7-4
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When transformation~16! is substituted into Eqs.~13!, we
find that the resulting equations have a two-layer structu
There is an inner layer wherer̄ is left unscaled and in which
we putu512B/p. We then look for a solution by expand
ing B andX̄ in inverse powers ofp. The leading-order terms
(B0 ,X̄0) are all that we really need to consider. These sati
on lettingp→`,

B092B0e2B050, B0→0 as r̄→2`. ~17!

Primes now denote differentiation with respect tor̄ . From
Eq. ~17! it follows that

B08
252@12~11B0!e2B0# ~18!

and then

B0;A2r̄ 1•••, hence u;12
A2r̄

p
••• as r̄→`.

~19!

The expression foru in Eq. ~19! suggests the scalingz
5 r̄ /p for the outer layer, withu left unscaled in this region
In this outer layeru,1 and henceup→0 asp→`. Then, to
get a viable solution in the outer region both terms aris
from the diffusion must balance. This, together with the sc
ing of r̄ for the outer region, requires thatX be ofO(p). The
equation at leading order for this region is

u91
2

X̄01z
u850, ~20!

subject to, from Eqs.~13! and ~19!,

u;12A2z1••• as z→0, u→0 as z→`
~21!

~primes denote differentiation with respect toz). The re-
quired solution is

u5
X̄0

~X̄01z!
. ~22!

Matching Eq.~22! with the inner layer Eq.~21! then gives

X̄05
1

A2
, hence X;

p

A2
1O~1! for p@1. ~23!

C. Solution asp\5

To obtain a solution to Eq.~13! valid as p→5 from
above, we put

p551d, 0,d!1. ~24!

The numerical integrations indicate that bothu0 and u(r )
decrease in size asp→5 ~see Fig. 5!. This, together with Eq.
~13!, suggests that we introduce the scaling
01620
e.

y,

g
l-

u5dmU, y5d2mr , ~25!

where the exponentm (m.0) is to be determined. Applying
Eq. ~25! in Eq. ~13! gives

U91
2

y
U81~12dmU !U5 exp@d~ ln U1m ln d!#50.

~26!

Now primes denote differentiation with respect toy.
First suppose thatm,1. Equation ~26! then suggests

looking for a solution by expanding

U~y;d!5U0~y!1dmU1~y!1O~d,d ln d!. ~27!

At leading order we obtain

U091
2

y
U081U0

550. ~28!

For y small

U05b02
b0

5y2

6
1••• ~29!

for some constantb0 to be determined. We can scaleb0 out
of the leading-order problem~28!, ~29! by putting

U05b0Ū0 , ȳ5b0
2y. ~30!

Ū0 satisfies Eq.~28! ~with y replaced byȳ) and has

Ū0512
ȳ2

6
1

ȳ4

24
1•••, ȳ small,

Ū0;
C0

ȳ
2

C0
5

6ȳ3
1•••, ȳ large. ~31!

A solution to Eq.~28!, satisfying Eq.~31!, can be determined
numerically as an initial-value problem starting withȳ small.
This givesC051.7321.

At O(dm) we obtain

U191
2

y
U1815U0

4U15U0
6 . ~32!

Equation~32! has a complementary function

Ũ52yU081U0 , ~33!

which satisfies the required boundary conditions@Ũ bounded
at y50 and hasŨ of O(y21) for y large#. Thus, if we write
Eq. ~32! in the self-adjoint form (d/dy)(y2U18)15y2U0

4U1

5y2U0
6, we can see that it has a solution only if the comp

ibility condition

E
0

`

U0
6Ũy2dy5E

0

`

~2y3U0
6U081y2U0

7!dy50 ~34!
7-5
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is satisfied. If we integrate by parts the term involvingU08 ,
we find that this condition isnot satisfied, the integral be
comes1

7 *0
`y2U0

7dy.0.
Thus we must takem51, with scaling~25! becoming

u5dU, y5d2r . ~35!

An expansion of the form

U~y;d!5U0~y!1d„ln dU1~y!1U2~y!…1••• ~36!

is now suggested. At leading order we again get Eq.~28!,
rescaled by Eq.~30! to remove the constantb0. At O(d ln d)
we obtain

U191
2

y
U1815U0

4U152U0
5 . ~37!

The compatibility condition equivalent to Eq.~34! is now
that

E
0

`

U0
5Ũy2dy5E

0

`

~2y3U0
5U081y2U0

6!dy50. ~38!

Now integrating by parts the term involvingU08 shows that
this conditionis satisfied and a solution at this order is po
sible.

At O(d) we obtain

U291
2

y
U2815U0

4U25U0
5~U02 ln U0!. ~39!

We rescale Eq.~39! using Eq.~30! andU25b0Ū2 to obtain

Ū291
2

y
Ū2815Ū0

4Ū25Ū0
5~b0Ū02 ln Ū02 ln b0!. ~40!

The compatibility condition now becomes

E
0

`

Ū0
5~b0Ū02 ln Ū02 ln b0!Ũȳ2dȳ

5
b0

7 E
0

`

ȳ2Ū0
7dȳ2

1

6E0

`

ȳ2Ū0
6dȳ50. ~41!

It is this condition that determines the value ofb0. Numerical
integration givesb051.7181.

The solution atO(d) is not unique, any multiple ofŨ can
be added. We expect the arbitrariness at this order to
resolved at higher terms in the expansion~36!.

The above analysis shows that the solution has a w
logarithmic singularity asp→51 with

u0;1.7181d1O~d2,d2ln d! ~42!
01620
-

be

ak

asd5(p25)→0. A graph of asymptotic expression~42! is
plotted in Fig. 5~the broken line!, showing agreement with
the numerically determined values asp decreases towards 5

We can use this approach to explain whyp55 is the
critical exponent forN53. Consider a general valuep0 for p
(p0.1) and putp5p01d (0,d!1). The above analysis
suggests that we first make the transformation

u5dU, y5d (p021)/2r ~43!

and expand as in Eq.~36!. The corresponding leading-orde
equation is, for a general geometric dimensionN,

U091
~N21!

y
U081U0

p050 ~44!

@satisfying conditions equivalent to Eq.~31!, the modifica-
tion to transformation~30! is ȳ5b0

(p021)/2y].
It is the term atO(d ln d) that is the important one to

consider. We note that a term of this order will always app
in any asymptotic expansion for smalld as it arises from the
scaling ofu in Eq. ~43! in which d is raised to the powerd.
The corresponding equation is

U191
~N21!

y
U181p0U0

p021U152U0
p0 . ~45!

Equation~45! has a complementary function

Ũ5S p021

2 D yU081U0 ~46!

equivalent to Eq.~33!, which satisfies the required bounda
conditions. This then leads to the compatibility condition th

E
0

`

U0
p0ŨyN21dy5

p0~22N!1~N12!

2~p011!

3E
0

`

yN21U0
p011dy50, ~47!

providedN.2. This gives the critical exponent

p05
N12

N22
~N.2!. ~48!

Expression~48! gives p055 whenN53 and suggests tha
the isothermal flame balls are a direct consequence of ha
spherical geometry and will not arise in either planar or c
lindrical geometries.
7-6
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IV. STRUCTURE OF THE SOLUTION

The above analysis confirms the existence of steady
thermal flame ball solutions for the reaction-diffusion syst
driven by an autocatalytic reaction of sufficiently high ord
(p.5). Although such autocatalytic orders are not comm
in simple solution-phase chemical systems, values forp in
the relevant range have been reported for a model repre
tation of systems with micellar and phase-transfer auto
talysis @34–37#. The results given here also extend in a fo
mal manner the results presented previously by Merkin
Needham for lower autocatalytic powers, and also provid
connection to the behavior of nonisothermal systems dri
by the Arrhenius temperature dependence of reaction
coefficients.

The steady-state profiles identified here are unstable s
tions of the corresponding initial-value problem. As suc
they are still of distinct practical interest as they identify t
critical ‘‘watershed’’ between initial conditions for which
propagating reaction fronts can develop and those for wh
initiation fails. It is thus of interest to determine how th
‘‘size’’ of the steady state flame ball varies with the autoca
lytic power p. To make this question precise, we define
reaction rate per unit radial distance,v r5r 2up(12u). For
DA5DB , this is equivalent to the functionr 2abp. This func-
tion is plotted as a function of the radial distancer for several
values of the autocatalytic orderp in Fig. 7~a!. We then de-
fine the ‘‘radius’’ of the flame ball in terms of the locationRb
at which this function has a maximum for any given value
p. The resulting variation ofRb with p is shown in Fig. 7~b!.
This shows a rapid decrease in radius asp increases from
p55, with a minimum radius atp.6.71. For higher auto-
catalytic orders, the radius increases, showing an approa
a constant slope of'0.7 for p large. This linear growth a
high p is consistent with the asymptotic analysis which p
dicts a slope of 1/A2 @expression~23!#.

The analysis of the preceding section provides insig
into how the steady solution changes asp increases fromp
55. For values ofp just abovep55 the autocatalyst con
centration takes only small values throughout, ofO(p25)
from Eq. ~35!. However, the profiles extend over large d
tances from the center, ofO(@p25#22). As p increases the
autocatalyst concentration increases, approaching a con
value at the center, with the extent of the profile decreas
For even larger values ofp, a fully reacted core region de
velops and the outer structure is purely diffusive. There i
relatively thin reaction zone between these two regions. T
behavior is apparent in Fig. 7~a! for the higher values ofp,
which reveals the development of the central core and
shows that the maximum value ofv r increases withp.

In Fig. 7~c!, we plot the locationRV of the maximum of
the volumetric reaction rateV5up(12u). For low autocata-
lytic powers (p.5), this maximum occurs at the center
the sphere,RV50, but asp increases, the maximum move
away from the center atp56.55, indicating the initial onse
of the central core region. This onset is apparently linked
the minimum inRb .

The origin of the growth asp→51 can be understood
from Eq. ~13!. If we multiply this Eq. ~with N53) by r 2,
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integrate and apply conditions~14! and ~15!, we obtain

A05E
0

`

r 2up~12u!dr ~49!

with the value ofA0 providing an estimate forRb . From
Eqs.~30!, ~31!, and~35!

A0;
C0

b0d
1•••51.008d211••• as d→0 ~50!

~whered5p25!.
Equation ~13!, which we considered in detail, wa

derived from the original dimensional version by a nonsta
ard transformation. The autocatalyst concentration
made dimensionless with a weighting of diffusion c
efficients, b5u(DA /DB)a0. A similar sort of weighting
is used for the dimensionless spatial variab

FIG. 7. ~a! A graph ofv r , the reaction rate per unit radial dis
tance, for a range of values ofp. ~b! Rb , the position wherev r

achieves its maximum value, plotted againstp. ~c! RV , the position
where the volumetric reaction rateV5up(12u) achieves its maxi-
mum value, plotted againstp.
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r 5(ka0
p/DB)1/2(DA /DB)p/2x. Thus larger autocatalyst con

centrations will be achieved when the value ofDA is greater
relative to that ofDB . This is to be expected as, in this cas
the substrate can diffuse more easily into the reaction reg
thus producing more autocatalyst. The radial spread of
profiles is also affected by the ratio of the diffusion coef
cients, being generally greater in extent, the larger the va
of DA is relative to DB . This effect becomes more pro
nounced for the higher order autocatalysis.
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